Add like
Add dislike
Add to saved papers

The Role of Mitochondria-Associated Reactive Oxygen Species in the Amyloid β Induced Production of Angiogenic Factors b y ARPE-19 Cells.

OBJECTIVE: This study aimed to investigate the mechanisms whereby Amyloidbeta (Aβ) induces the production of angiogenic factors by a human retinal pigment epithelial cell line (ARPE-19) cells.

METHODS: ARPE-19 cells obtained from the American Type Culture Collection (ATCC) were utilized in this study. The expression level of vascular endothelial growth factor (VEGF), Interleukin-8 (IL-8), monocyte chemoattractant protein-1 (MCP-1) and complement activation fragments C3a and C5a were measured by Real-time quantitative PCR (RT-PCR) and Enzyme-linked immunosorbent assay (ELISA). The production of mitochondria-associated reactive oxygen species (ROS) was measured by flow cytometry.

RESULTS: The expression of VEGF, IL-8, MCP-1, C3a and C5a was significantly increased in Aβ-treated ARPE-19 cells. Mitochondria-associated ROS production was also significantly increased when exposed to Aβ. Inhibition of mitochondrial ROS with Diphenyleneiodonium chloride (DPI) markedly decreased the Aβ induced production of VEGF, IL-8, MCP-1, C3a and C5a by ARPE-19 cells. Anti-C3a or anti-C5a neutralizing antibodies did not have a detectable influence on the secretion of VEGF, IL-8 and MCP-1 by ARPE-19 cells upon stimulation with Aβ.

CONCLUSION: Our results support the hypothesis that Aβ is involved in the pathogenesis of choroidal neovascularization (CNV) formation by promoting the production of the angiogenic cytokines VEGF, IL-8 and MCP-1 by RPE cells. Mitochondrial ROS was shown to play a role in the regulation of Aβ induced expression of these cytokines.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app