Add like
Add dislike
Add to saved papers

High-Performance Furan-Containing Conjugated Polymer for Environmentally Benign Solution Processing.

Developing semiconducting polymers that exhibit both strong charge transport capability via highly ordered structures and good processability in environmentally benign solvents remains a challenge. Given that furan-based materials have better solubility in various solvents than analogous thiophene-based materials, we have synthesized and characterized furanyl-diketopyrrolopyrrole polymer (PFDPPTT-Si) together with its thienyl-diketopyrrolopyrrole-based analogue (PTDPPTT-Si) to understand subtle changes induced by the use of furan instead of thiophene units. PTDPPTT-Si films processed in common chlorinated solvent exhibit a higher hole mobility (3.57 cm2 V-1 s-1 ) than PFDPPTT-Si films (2.40 cm2 V-1 s-1 ) under the same conditions; this greater hole mobility is a result of tightly aggregated π-stacking structures in PTDPPTT-Si. By contrast, because of its enhanced solubility, PFDPPTT-Si using chlorine-free solution processing results in a device with higher mobility (as high as 1.87 cm2 V-1 s-1 ) compared to that of the corresponding device fabricated using PTDPPTT-Si. This mobility of 1.87 cm2 V-1 s-1 represents the highest performances among furan-containing polymers reported to the best of our knowledge for nonchlorinated solvents. Our study demonstrates an important step toward environmentally compatible electronics, and we expect the results of our study to reinvigorate the furan-containing semiconductors field.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app