Add like
Add dislike
Add to saved papers

Participation of C-H Protons in the Dissociation of a Proton Deficient Dipeptide.

The dissociation of anionic dipeptides Phe*Gly and GlyPhe*, where Phe* refers to sulfonated phenyl alanine, has been investigated by using ion trap mass spectrometry. The dipeptides undergo collision-induced dissociation (CID) to give the same products, indicating that they rearrange to a common structure before dissociation. The rearrangement does not occur with the dipeptide methyl esters. The structures of the b2 ions were investigated to determine the effect that having a remote, anionic site has on product formation. Comparison with the CID spectra for authentic structures shows that the b2 ion obtained from GlyPhe* has predominantly a diketopiperazine structure. The CID spectra for the Phe*Gly b2 ion and the authentic oxazolone are similar, but differences in intensity suggest a two-component mixture. Isotopic labeling studies are consistent with the formation of two products, with one resulting from loss of a non-mobile proton on the Gly α-carbon. The results are attributed to the formation of an oxazole and oxazolone enol product. Electronic structure calculations predict that the enol structure of the Phe*Gly b2 ion is lower in energy than the keto version due to intramolecular hydrogen bonding with the sulfonate group. Graphical Abstract ᅟ.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app