Add like
Add dislike
Add to saved papers

Probing the role of excited states in ionization of acetylene.

Ionization of acetylene by linearly-polarized, vacuum ultraviolet (VUV) laser pulses is modelled using time-dependent density functional theory. Several laser wavelengths are considered including one that produces direct ionization to the first excited cationic state while another excites the molecules to a Rydberg series incorporating an autoionizing state. We show that for the wavelengths and intensities considered, ionization is greatest whenever the molecule is aligned along the laser polarization direction. By considering high harmonic generation we show that populating excited states can lead to a large enhancement in the harmonic yield. Lastly, angularly-resolved photoelectron spectra are calculated which show how the energy profile of the emitted electrons significantly changes in the presence of these excited states.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app