JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Dynamic Behaviors of Condensing Clusters Based on Rayleigh Scattering Experiment.

Scientific Reports 2017 April 21
Condensation is a common physical process which widely exists in natural phenomena and thermal energy systems. In a condensation process, cluster is considered as the important bridge between vapor body and condensates. However, limited by the minimum imaging dimension of traditional measurements, early experimental studies about initial stages of condensation process are not sufficient. This paper provides a powerful optical platform for the study of dynamic clusters process. Based on the Rayleigh law, optical experiments were firstly introduced to investigate the clusters spatial distribution close to and far from condensation surface. The results show that clusters are mainly generated in the vicinity of the condensation surface within the thickness of 200 μm. When they move away from the condensation surface, clusters progressively vanish and they have a life cycle of a fraction of a millisecond. Though scattering intensity is proportional to the 6th power of cluster radius r and cluster number density N c theoretically, the scattering intensity does not increase sharply with the increase of subcooling degree from the experimental results, so we can infer that the cluster number density plays a dominate role in this process and the effect of cluster radius almost can be ignored.Zhong Lan and Di Wang contributed equally to this work.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app