Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Immune Gene Expression Is Associated with Genomic Aberrations in Breast Cancer.

Cancer Research 2017 June 16
The presence of tumor-infiltrating lymphocytes (TIL) is a favorable prognostic factor in breast cancer, but what drives immune infiltration remains unknown. Here we examine if clonal heterogeneity, total mutation load, neoantigen load, copy number variations (CNV), gene- or pathway-level somatic mutations, or germline polymorphisms (SNP) are associated with immune metagene expression in breast cancer subtypes. Thirteen published immune metagenes correlated separately with genomic metrics in the three major breast cancer subtypes. We analyzed RNA-Seq, DNA copy number, mutation and germline SNP data of 627 ER+ , 207 HER2+ , and 191 triple-negative (TNBC) cancers from The Cancer Genome Atlas. P -values were adjusted for multiple comparisons, and permutation testing was used to assess false discovery rates. Increased immune metagene expression associated significantly with lower clonal heterogeneity estimated by MATH score in all subtypes and with a trend for lower overall mutation, neoantigen, and CNV loads in TNBC and HER2+ cancers. In ER+ cancers, mutation load, neoantigen load, and CNV load weakly but positively associated with immune infiltration, which reached significance for overall mutation load only. No highly recurrent single gene or pathway level mutations associated with immune infiltration. High immune gene expression and lower clonal heterogeneity in TNBC and HER2+ cancers suggest an immune pruning effect and equilibrium between immune surveillance and clonal expansion. Thus, immune checkpoint inhibitors may tip the balance in favor of immune surveillance in these cancers. Cancer Res; 77(12); 3317-24. ©2017 AACR .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app