Comparative Study
Journal Article
Add like
Add dislike
Add to saved papers

JWA antagonizes paraquat-induced neurotoxicity via activation of Nrf2.

Toxicology Letters 2017 August 6
Paraquat (PQ), a widely used environmental toxin in agriculture, contributes to the onset and progression of Parkinson's disease (PD) by damaging neurons. The JWA gene, also known as ARL6IP5, exerts a protective effect on degenerating dopamine (DA) neurons. However, the roles of JWA in PQ-induced neuronal damage are still unknown. In our study, two neuronal cell lines (HT-22 and SH-SY5Y) and neuron-specific JWA knockout (JWA-nKO) and age-matched wild-type (JWA-nWT) mice were subjected to PQ treatment. The results indicate that PQ administration triggers the upregulation of JWA. Elevated expression of JWA rescues the accumulation of reactive oxygen species (ROS) while increasing glutathione (GSH) and glutathione peroxidase (GPx) levels under PQ exposure. Further investigations revealed that the protective effect of JWA mostly involves regulation of the MEK/PI3K-Nrf2 axis. Our results suggest that JWA may be a novel target for the prevention and treatment of PQ-induced PD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app