Add like
Add dislike
Add to saved papers

Enhancement of ethyl (S)-4-chloro-3-hydroxybutanoate production at high substrate concentration by in situ resin adsorption.

Asymmetric reduction of ethyl 4-chloro-3-oxobutyrate (COBE) by carbonyl reductases presents an efficient way to produce Ethyl (S)-4-chloro-3-hydroxybutanoate ((S)-CHBE), an important chiral intermediate for the synthesis of hydroxymethylglutaryl-CoA reductase inhibitors such as Lipitor® . In this study, an NADPH-dependent carbonyl reductase (SrCR) from Synechocystis sp. was characterized to demonstrate a broad substrate spectrum, and the highest activity (53.1U/mg protein) with COBE. To regenerate the cofactor NADPH, Bacillus subtilis glucose dehydrogenase was successfully coexpressed with SrCR. Owing to the product inhibition, no more than 400mM of COBE could be completely reduced to (S)-CHBE using the recombinant Escherichia coli/pET-SrCR-GDH. The macroporous adsorption resin HZ 814 was applied to adsorb (S)-CHBE in situ to alleviate the product inhibitio. Consequently, 3000mM (494g/L) of COBE was bioconverted within 8h, resulting in a (S)-CHBE yield of 98.2%, with 99.4% ee and total turnover number of 15,000, revealed great industrial potential of (S)-CHBE production.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app