Add like
Add dislike
Add to saved papers

The 20kDa and 22kDa forms of human growth hormone (hGH) exhibit different intracellular signalling profiles and properties.

Human Growth Hormone (hGH) includes two main variants. The first is 22kDa GH (22K-GH), which is predominant in the blood circulation. The second most abundant variant is 20K-GH, which makes up 5-10% of the blood circulation. Both bind and activate the same receptor, called the human growth hormone receptor (GHR). However, the reason why 22K-GH and 20K-GH exhibit similar, but not identical physiological activities remains poorly understood. In this article, the intracellular signalling profiles between these two hormones were examined. Western blot analyses were performed in 3T3-F442A and CHO cells transfected with GHR (CHO-GHR). The results revealed that both 22K-GH and 20K-GH can activate Janus kinase 2 (JAK2) and signal transducers and activators of transcription 1, 3 and 5 (STATs 1/3/5). Both induced tyrosine phosphorylation of JAK2 and STAT/1/3/5 in a time-dependent and dose-dependent manner. However, there were significant differences in the intracellular signalling properties between 22K-GH and 20K-GH. In particular, the kinetics of signalling shown by 22K-GH and 20K-GH is different. In addition, we found that the 20K-GH-induced tyrosine phosphorylation of signalling proteins was weaker than that of 22K-GH. Together, these observations indicate that the levels and kinetics of phosphorylation mediated by the main signalling proteins triggered by 22K-GH or 20K-GH were not exactly the same. This may provide a possible explanation for the different biological activities exhibited by 22K-GH and 20K-GH.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app