Add like
Add dislike
Add to saved papers

Experimental study on the influence of low-frequency and low-intensity ultrasound on the permeability of the Mycobacterium smegmatis cytoderm and potentiation with levofloxacin.

Tuberculosis is an infectious disease caused by the bacterium M. tuberculosis. The aim of this study was to investigate the bactericidal effect and underlying mechanisms of low-frequency and low-intensity ultrasound combined with levofloxacin treatment against M. smegmatis (a surrogate of M. tuberculosis). As part of this study, M. smegmatis was continuously irradiated with low frequency ultrasound (42kHz) using several different doses whereby both intensity (0.138, 0.190 and 0.329W/cm2 ) and exposure time (5, 15 and 20min) were varied. Flow cytometric analyses revealed that the permeability of M. smegmatis increased following ultrasound exposure. The survival rate, structure and morphology of bacteria in the lower-dose (ISATA =0.138W/cm2 for 5min) ultrasound group displayed no significant differences upon comparison with the untreated group. However, the survival rate of bacteria was significantly reduced and the bacterial structure was damaged in the higher-dose (ISATA =0.329W/cm2 for 20min) ultrasound group. Ultrasound irradiation (0.138W/cm2 ) was subsequently applied to M. smegmatis in combination with levofloxacin treatment for 5min. The results demonstrated that the bactericidal effect of ultrasonic irradiation combined with levofloxacin is higher compared to ultrasound alone or levofloxacin alone.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app