Add like
Add dislike
Add to saved papers

A Computational Approach to Identify the Biophysical and Structural Aspects of Methylenetetrahydrofolate Reductase (MTHFR) Mutations (A222V, E429A, and R594Q) Leading to Schizophrenia.

The association between depression and methylenetetrahydrofolate reductase (MTHFR) has been continually demonstrated in clinical studies, yet there are sparse resources available to build a relationship between the mutations associated with MTHFR and depression. The common mutations found to be associated with schizophrenia and MTHFR are A222V, E429A, and R594Q. Although abundant research on structural and functional effects caused by A222V mutation is available, very less amount of studies have been done on the other two mutants (E429A and R594Q). Hence in this study, a comparative analysis was carried out between the most common A222V mutation, a prevalent E429A mutation, and a less prevalent and less deleterious R594Q mutation. To predict structural rearrangements upon mutation, we proposed a computational pipeline using in silico prediction tools, molecular docking, and molecular dynamics simulation analysis. Since the association of flavin adenine dinucleotide (FAD) is important for the functioning of the protein, binding analysis between protein and the coenzyme was performed. This would enable us to understand the interference level of each mutation over FAD-binding activity. Consequently, we found that two mutations (A222V and E429A) showed lesser binding activity and structural deviations when compared to the native molecule and mutant R594Q. Comparatively, higher structural changes were observed with A222V mutant complex in comparison to other mutant complexes. Computational studies like this could render better insights into the structural changes in the protein and their relationship with the disease condition.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app