Add like
Add dislike
Add to saved papers

Silica nanoparticles induced intrinsic apoptosis in neuroblastoma SH-SY5Y cells via CytC/Apaf-1 pathway.

The present study was to investigate effects of Silica nanoparticles (SiNPs) on nervous system and explore potential mechanisms in human neuroblastoma cells (SH-SY5Y). Cytotoxicity was detected by cell viability and Lactate dehydrogenase (LDH) release. Flow cytometry analysis was applied to assess mitochondrial membrane potential (MMP) loss, intracellular Ca(2+) and apoptosis. To clarify the mechanism of SiNPs-induced apoptosis, intrinsic apoptosis-related proteins were detected. Our results showed that SiNPs caused cytotoxicity, cell membrane damage and Ca(2+) increase in a dose-dependent manner in SH-SY5Y cells. Both the mitochondrial membrane potential (MMP) loss and potential mitochondria damage resulted in Cyt C release to the cytoplasm. The elevated Cyt C and Apaf1 further triggered intrinsic apoptosis via executive molecular caspase-9 and caspase-3. The present study confirmed that SiNPs induced intrinsic apoptosis in neuroblastoma SH-SY5Y cells via CytC/Apaf-1 pathway and provided a better understanding of the potential toxicity induced by SiNPs on human neurocyte.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app