Add like
Add dislike
Add to saved papers

Exploratory study on the effect of osteoactivin on muscle regeneration in a rat volumetric muscle loss model.

Wounds causing extensive injury loss of muscle, also known as volumetric muscle loss (VML), are frequently associated with high-energy civilian trauma and combat-related extremity injuries. Currently, no effective clinical therapy is available for promoting de novo muscle tissue regeneration to restore muscle function following VML. Recent studies have shown evidence that osteoactivin (OA), a transmembrane glycoprotein, has the ability to prevent skeletal muscle atrophy in response to denervation. Therefore the objective of this study is to investigate the potential regenerative effect of OA embedded and delivered via a cross-linked gelatin hydrogel within a volumetric tibialis anterior muscle defect in a rat model. After 4 weeks, however, no evidence for muscle formation was found in defects treated with either low (5 μg/ml) or high (50 μg/ml) OA. It is possible that a different delivery scaffold, delivery kinetics, or OA concentration may have yielded an alternate outcome, or it is also possible that the spaciostructural environment of VML, or the local (versus systemic) delivery of OA, simply does not support any potential regenerative activity of OA in VML. Together with prior work, this study demonstrates that an efficacious and scalable therapy for regenerating muscle volume and function in VML remains a veritable clinical challenge worthy of continued future research efforts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app