Add like
Add dislike
Add to saved papers

Growth Differentiation Factor 5 Accelerates Wound Closure and Improves Skin Quality During Repair of Full-Thickness Skin Defects.

BACKGROUND: A fast and stable wound closure is important, especially for extended and unstable wounds found after burn injuries. Growth can regulate a variety of cellular processes, including those involved in wound healing. Growth differentiation factor 5 (GDF-5) can accelerate fibroblast cell migration, cell proliferation, and collagen synthesis, which are essential for wound healing. Nevertheless, no standardized evaluation of the effect of GDF-5 on the healing of full-thickness wounds has been published to date.

METHODS: Five full-thickness skin defects were created on the backs of 6 minipigs. Three wounds were treated with GDF-5 in different concentrations with the help of a gelatin-collagen carrier, and 2 wounds served as control group. The first was treated with the gelatin carrier and an Opsite film (Smith & Nephew, Fort Worth, Texas), and the other was treated solely with an Opsite film that was placed above all wounds and renewed every second day.

RESULTS: Growth differentiation factor 5 accelerates wound closure (10.91 [SD, 0.99] days) compared with treatment with the carrier alone (11.3 [SD, 1.49] days) and control wounds (13.3 [SD, 0.94] days). Epidermal cell count of wounds treated with GDF-5 revealed a higher number of cells compared with the control group. In addition, mean epidermal thickness was significantly increased in GDF-5-treated wounds compared with the control wounds.

CONCLUSIONS: Because of its ability to improve skin quality, GDF-5 should be considered when developing composite biomaterials for wound healing.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app