Add like
Add dislike
Add to saved papers

Channel-Assisted Proton Conduction Behavior in Hydroxyl-Rich Lanthanide-Based Magnetic Metal-Organic Frameworks.

Two new lanthanide-based 3D metal-organic frameworks (MOFs), {[Ln(L)(Ox)(H2 O)]n ·xH2 O} [Ln = Gd3+ and x = 3 (1) and Dy3+ and x = 1.5 (2); H2 L = mucic acid; OxH2 = oxalic acid] showing interesting magnetic properties and channel-mediated proton conduction behavior, are presented here. Single-crystal X-ray structure analysis shows that, in complex 1, the overall structure originates from the mucate-bridged gadolinium-based rectangular metallocycles. The packing view reveals the presence the two types of hydrophilic 1D channels filled with lattice water molecules, which are strongly hydrogen-bonded with coordinated water along the a and b axes, whereas for complex 2, the 3D framework originates from a carboxylate-bridged dysprosium-based criss-cross-type secondary building block. Magnetic studies reveal that 1 exhibits a significant magnetic entropy change (-ΔSM ) of 30.6 J kg-1 K-1 for ΔH= 7 T at 3 K. Our electronic structure calculations under the framework of density functional theory reveal that exchange interactions between Gd3+ ions are weak and of the antiferromagnetic type. Complex 2 shows field-induced single-molecule-magnetic behavior. Impedance analysis shows that the proton conductivity of both complexes reaches up to the maximum value of 4.7 × 10-4 S cm-1 for 1 and 9.06 × 10-5 S cm-1 for 2 at high temperature (>75 °C) and relative humidity (RH; 95%). The Monte Carlo simulations confirm the exact location of the adsorbed water molecules in the framework after humidification (RH = 95%) for 1. Further, the results from computational simulation also reveal that the presence of a more dense arrangement of adsorbed water molecules through hydrogen bonding in a particular type of channel (along the a axis) contributes more to the proton migration compared to the other channel (along the b axis) in the framework.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app