Add like
Add dislike
Add to saved papers

Improved spatial resolution for spot sampling in thermal desorption atomic force microscopy - mass spectrometry via rapid heating functions.

Nanoscale 2017 May 5
The key to advancing materials is to understand and control their structure and chemistry. However, thorough chemical characterization is challenging since existing techniques characterize only a few properties of the specimen, thereby necessitating multiple measurement platforms to acquire the necessary information. The multimodal combination of atomic force microscopy (AFM) and mass spectrometry (MS) transcends existing analytical capabilities for nanometer scale spatially resolved correlation of the chemical and physical properties of a sample surface. One such hybrid system employs heated AFM cantilevers for thermal desorption (TD) sampling of molecules from a surface and subsequent gas phase ionization and detection of the liberated species by MS. Herein, we report on the use of voltage pulse trains to tailor cantilever heating such that spot sampling size was reduced and mass spectral signal was improved compared to constant voltage, static heating of the cantilever. Desorption efficiency (DE), defined as the quotient of the mass spectral signal intensity and the volume of the desorption crater, was used to judge the effectiveness of a particular tailored heating function. To guide the development and optimization of the heating functions and aid in interpreting experimental results, a 1D finite element model was developed that predicted the cantilever response to different heating functions. Three tailored heating functions that used different combinations, magnitudes, and durations of rectangular voltage pulses, were used for surface spot sampling. The resultant sampling spot size and DE were compared to the same metrics obtained with the conventional method that uses a single voltage pulse. Using a model system composed of a thin film of ink containing pigment yellow 74 as a model system, desorption craters shrunk from 2 μm, using the conventional approach, to 310 nm using the optimum tailored heating function. This same pulsed heating function produced a 381× improvement in the DE and an 8× improvement in spatial resolution compared to the conventional heating approach showing that signal/amount of material sampled was improved significantly by this new cantilever heating strategy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app