Add like
Add dislike
Add to saved papers

Granadilla-Inspired Structure Design for Conversion/Alloy-Reaction Electrode with Integrated Lithium Storage Behaviors.

Conversion/alloy-reaction electrode materials promise much higher energy density than the commonly used ones based on intercalation chemistries. However, the low electronic conductivity and, specially, the large volume expansion upon lithiation hinder their practical applications. Here, for the first time, a unique granadilla-inspired structure was designed to prepare the conversion/alloy-reaction anode of carbon coated tin/calcium tin oxide (C@void@Sn/CaSnO3 ) ternary composite. The granadilla-inspired structure ensures the intimate contact between the Sn/CaSnO3 nanoparticles and the carbon matrix, providing not only conductive networks for electron transport and a short distance for Li+ diffusion but also effective space for the electrode volume expansion toward conversion/alloy reaction. Moreover, the unique structure possesses abundant solid-solid interfaces between the three components as well as solid-liquid interfaces between nanoparticles and electrolyte, contributing to a large percent (58%) of interfacial charge (thus capacity). The integration of alloy-reaction, conversion-reaction, and interfacial lithium storage endows the hybrid electrode with a high capacity and long cycling life, holding great promise for next-generation high-capacity lithium-ion batteries.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app