Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Changes in cIAP2, survivin and BimEL expression characterize the switch from autophagy to apoptosis in prolonged starvation.

BACKGROUND: Autophagy is a catabolic process involving the engulfment of cytoplasmic content within autophagosomes followed by their delivery to lysosomes. This process is a survival mechanism, enabling cells to cope with nutrient deprivation by degradation and recycling of macromolecules. Yet during continued stress such as prolonged starvation, a switch from autophagy to apoptosis is often detected.

OBJECTIVE: In this work, we characterized the temporal dynamics of the transition from autophagy towards apoptosis with the aim of elucidating the molecular mechanism regulating the switch from survival autophagy to apoptotic cell death.

RESULTS AND CONCLUSIONS: We defined an inverse relationship between apoptosis and autophagy spanning a period of 72 h, manifested by the sequential reduction in LC3 lipidation and the activation of caspase-3. The transition to apoptosis correlated with a selective decline in the mRNA and protein levels of two anti-apoptotic IAP family proteins, survivin and cIAP2 and a selective increase in the BH3-only protein, BimEL. This 'molecular signature' was common to several cell lines undergoing the switch from autophagy to apoptosis during prolonged starvation. Mechanistically, the increased BimEL protein levels resulted from its reduced binding to its specific E3 ligase, βTrCP, leading to protein stabilization. Consistent with this, BimEL showed decreased phosphorylation at critical sites previously reported to be essential for binding to the E3 ligase. The decrease in the anti-apoptotic IAPs and the increase in the pro-apoptotic BimEL may thus constitute a molecular switch from autophagy to apoptosis during prolonged starvation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app