Add like
Add dislike
Add to saved papers

Diels-Alder reactions of graphene oxides: greatly enhanced chemical reactivity by oxygen-containing groups.

Graphene oxides (GOs) or reduced GOs (rGOs) may offer extraordinary potential for chemical functionalization of graphene due to their unique electronic and structural properties. By means of dispersion-corrected density functional theory computations, we systematically investigated the Diels-Alder (DA) chemistry of GOs. Our computations showed that the dual nature of GOs as both a diene and a dienophile is stronger than that of pristine graphene. Interestingly, the interior bonds of a graphene surface modified by oxygen-containing groups could be functionalized by maleic anhydride (MA) and 2,3-dimethoxybutadiene (DMBD) through cycloaddition reactions, and the cycloaddition products of MA and DMBD are more favorable than the non-covalent complexes between these reagents and the GO surface. The feasibility of covalent functionalization of GOs as a diene and a dienophile strongly depends on the local structural environment of the oxygen groups, including the atomic arrangement and the number of these groups surrounding the reaction site. The exothermicities for (4+2) adducts of DMBD with GO are far larger than those of MA, which indicates that the dienophile character of the GO surface is stronger than its behavior as a diene.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app