Add like
Add dislike
Add to saved papers

Record Broken: A Copper Peroxide Complex with Enhanced Stability and Faster Hydroxylation Catalysis.

Tyrosinase model systems pinpoint pathways to translating Nature's synthetic abilities for useful synthetic catalysts. Mostly, they use N-donor ligands which mimic the histidine residues coordinating the two copper centres. Copper complexes with bis(pyrazolyl)methanes with pyridinyl or imidazolyl moieties are already reported as excellent tyrosinase models. Substitution of the pyridinyl donor results in the new ligand HC(3-tBuPz)2 (4-CO2 MePy) which stabilises a room-temperature stable μ-η2 :η2 -peroxide dicopper(II) species upon oxygenation. It reveals highly efficient catalytic activity as it hydroxylates 8-hydroxyquinoline in high yields (TONs of up to 20) and much faster than all other model systems (max. conversion within 7.5 min). Stoichiometric reactions with para-substituted sodium phenolates show saturation kinetics which are nearly linear for electron-rich substrates. The resulting Hammett correlation proves the electrophilic aromatic substitution mechanism. Furthermore, density functional theory (DFT) calculations elucidate the influence of the substituent at the pyridinyl donor: the carboxymethyl group adjusts the basicity and nucleophilicity without additional steric demand. This substitution opens up new pathways in reactivity tuning.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app