Add like
Add dislike
Add to saved papers

Upregulation and phosphorylation of HspB1/Hsp25 and HspB5/αB-crystallin after transient middle cerebral artery occlusion in rats.

Ischemic stroke leads to cellular dysfunction, cell death, and devastating clinical outcomes. The cells of the brain react to such a cellular stress by a stress response with an upregulation of heat shock proteins resulting in activation of endogenous neuroprotective capacities. Several members of the family of small heat shock proteins (HspBs) have been shown to be neuroprotective. However, yet no systematic study examined all HspBs during cerebral ischemia. Here, we performed a comprehensive comparative study comprising all HspBs in an animal model of stroke, i.e., 1 h transient middle cerebral artery occlusion followed by 23 h of reperfusion. On the mRNA level out of the 11 HspBs investigated, HspB1/Hsp25, HspB3, HspB4/αA-crystallin, HspB5/αB-crystallin, HspB7/cvHsp, and HspB8/Hsp22 were significantly upregulated in the peri-infarct region of the cerebral cortex of infarcted hemispheres. HspB1 and HspB5 reached the highest mRNA levels and were also upregulated at the protein level, suggesting that these HspBs might be functionally most relevant. Interestingly, in the infarcted cortex, both HspB1 and HspB5 were mainly allocated to neurons and to a lesser extent to glial cells. Additionally, both proteins were found to be phosphorylated in response to ischemia. Our data suggest that among all HspBs, HspB1 and HspB5 might be most important in the neuronal stress response to ischemia/reperfusion injury in the brain and might be involved in neuroprotection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app