Add like
Add dislike
Add to saved papers

PEALD-Grown Crystalline AlN Films on Si (100) with Sharp Interface and Good Uniformity.

Aluminum nitride (AlN) thin films were deposited on Si (100) substrates by using plasma-enhanced atomic layer deposition method (PEALD). Optimal PEALD parameters for AlN deposition were investigated. Under saturated deposition conditions, the clearly resolved fringes are observed from X-ray reflectivity (XRR) measurements, showing the perfectly smooth interface between the AlN film and Si (100). It is consistent with high-resolution image of the sharp interface analyzed by transmission electron microscope (TEM). The highly uniform thickness throughout the 2-inch size AlN film with blue covered surface was determined by spectroscopic ellipsometry (SE). Grazing incident X-ray diffraction (GIXRD) patterns indicate that the AlN films are polycrystalline with wurtzite structure and have a tendency to form (002) preferential orientation with increasing of the thickness. The obtained AlN films could open up a new approach of research in the use of AlN as the template to support gallium nitride (GaN) growth on silicon substrates.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app