JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Targeting DNA-Dependent Protein Kinase for Cancer Therapy.

ChemMedChem 2017 June 22
The catalytic activity of DNA-dependent protein kinase (DNA-PK) is critical to its ability to repair lethal DNA double-strand breaks (DSBs). This includes repair of DSB lesions resulting from oxidative stress, oncogene-induced transcription, or following therapeutic treatment of cancer cells. Armed with this knowledge, many attempts have been made to identify small-molecule inhibitors of DNA-PK activity as an approach to induce tumour chemo- and radiosensitisation. This review examines the structures of known reversible and irreversible inhibitors, including those based on chromen-4-one, arylmorpholine, and benzaldehyde scaffolds. DNA-PK catalytic inhibitors, such as VX-984 (8-[(1S)-2-[[6-(4,6-dideuterio-2-methylpyrimidin-5-yl)pyrimidin-4-yl]amino]-1-methylethyl]quinoline-4-carboxamide) and M3814 ((S)-[2-chloro-4-fluoro-5-(7-morpholinoquinazolin-4-yl)phenyl]-(6-methoxypyridazin-3-yl)methanol), have now progressed into clinical development which should help to further advance our understanding of whether this approach is a promising therapeutic strategy for the treatment of cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app