Add like
Add dislike
Add to saved papers

Mesenteric lymph node CD11b - CD103 + PD-L1 High dendritic cells highly induce regulatory T cells.

Immunology 2017 September
Dendritic cells (DCs) in mesenteric lymph nodes (MLNs) induce Foxp3+ regulatory T cells to regulate immune responses to beneficial or non-harmful agents in the intestine, such as commensal bacteria and foods. Several studies in MLN DCs have revealed that the CD103+ DC subset highly induces regulatory T cells, and another study has reported that MLN DCs from programmed death ligand 1 (PD-L1) -deficient mice could not induce regulatory T cells. Hence, the present study investigated the expression of these molecules on MLN CD11c+ cells. Four distinct subsets expressing CD103 and/or PD-L1 were identified, namely CD11b+ CD103+ PD-L1High , CD11b- CD103+ PD-L1High , CD11b- CD103+ PD-L1Low and CD11b+ CD103- PD-L1Int . Among them, the CD11b- CD103+ PD-L1High DC subset highly induced Foxp3+ T cells. This subset expressed Aldh1a2 and Itgb8 genes, which are involved in retinoic acid metabolism and transforming growth factor-β (TGF-β) activation, respectively. Exogenous TGF-β supplementation equalized the level of Foxp3+ T-cell induction by the four subsets whereas retinoic acid did not, which suggests that high ability to activate TGF-β is determinant for the high Foxp3+ T-cell induction by CD11b- CD103+ PD-L1High DC subset. Finally, this subset exhibited a migratory DC phenotype and could take up and present orally administered antigens. Collectively, the MLN CD11b- CD103+ PD-L1High DC subset probably takes up luminal antigens in the intestine, migrates to MLNs, and highly induces regulatory T cells through TGF-β activation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app