Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

MRI-Based Medial Axis Extraction and Boundary Segmentation of Cranial Nerves Through Discrete Deformable 3D Contour and Surface Models.

This paper presents a segmentation technique to identify the medial axis and the boundary of cranial nerves. We utilize a 3-D deformable one-simplex discrete contour model to extract the medial axis of each cranial nerve. This contour model represents a collection of two-connected vertices linked by edges, where vertex position is determined by a Newtonian expression for vertex kinematics featuring internal and external forces, the latter of which include attractive forces toward the nerve medial axis. We exploit multiscale vesselness filtering and minimal path techniques in the medial axis extraction method, which also computes a radius estimate along the path. Once we have the medial axis and the radius function of a nerve, we identify the nerve surface using a two-simplex deformable model, which expands radially and can accommodate any nerve shape. As a result, the method proposed here combines the benefits of explicit contour and surface models, while also achieving a cornerstone for future work that will emphasize shape statistics, static collision with other critical structures, and tree-shape analysis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app