Add like
Add dislike
Add to saved papers

Robust Relative Rotation Averaging.

This paper addresses the problem of robust and efficient relative rotation averaging in the context of large-scale Structure from Motion. Relative rotation averaging finds global or absolute rotations for a set of cameras from a set of observed relative rotations between pairs of cameras. We propose a generalized framework of relative rotation averaging that can use different robust loss functions and jointly optimizes for all the unknown camera rotations. Our method uses a quasi-Newton optimization which results in an efficient iteratively reweighted least squares (IRLS) formulation that works in the Lie algebra of the 3D rotation group. We demonstrate the performance of our approach on a number of large-scale data sets. We show that our method outperforms existing methods in the literature both in terms of speed and accuracy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app