Add like
Add dislike
Add to saved papers

Visual Servoed Three-Dimensional Rotation Control in Zebrafish Larva Heart Microinjection System.

OBJECTIVE: Zebrafish larva heart microinjection is a widely used technique in cardiac disease study. Compared with intensively researched rotation control of spherical or nearly spherical targets with clear structures, such as cells and embryos, 3-D rotation control of zebrafish larva demands new techniques due to its nontransparent structures and irregular outlines.

METHODS: In this paper, we present a vision-servo system to automate the rotation process of zebrafish larva body. A switched control strategy is adopted to rotate zebrafish larva about the optical axis by using two micropipettes. Precisely rolling about larva body is performed, which involves a custom-designed rotational micromanipulator. A vision detection and online tracking algorithm is also developed to meet the requirement of visual servoing. With designed rotation control strategy, zebrafish larva heart can be adjusted to a desired orientation, which is often towards the injection pipette tip.

RESULTS: Experimental results show that the designed system is capable of achieving high success rate of 94% about -axis rotation and 100% about -axis with 50 trails. The system also performs an average speed of 44 s/larva with a satisfied rotation accuracy of 0.5 in the horizontal plane and 2.5 about its roll axis.

CONCLUSION: The proposed strategy is effective in flexibly manipulating larvae in 3-D.

SIGNIFICANCE: The developed 3-D rotation control scheme is able to be applied to injection of various organs in zebrafish larva body for different experimental requirements.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app