Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Probing Homogeneous Line Broadening in CdSe Nanocrystals Using Multidimensional Electronic Spectroscopy.

Nano Letters 2017 May 11
The finite spectral line width of an ensemble of CdSe nanocrystals arises from size and shape inhomogeneity and the single-nanocrystal spectrum itself. This line width directly limits the performance of nanocrystal-based devices, yet most optical measurements cannot resolve the underlying contributions. We use two-dimensional electronic spectroscopy (2D ES) to measure the line width of the band-edge exciton of CdSe nanocrystals as a function of radii and surface chemistry. We find that the homogeneous width decreases for increasing nanocrystal radius and that surface chemistry plays a critical role in controlling this line width. To explore the hypothesis that unpassivated trap states serve to broaden the homogeneous line width and to explain its size-dependence, we use 3D ES to identify the spectral signatures of exciton-phonon coupling to optical and acoustic phonons. We find enhanced coupling to optical phonon modes for nanocrystals that lack electron-passivating ligands, suggesting that localized surface charges enhance exciton-phonon coupling via the Fröhlich interaction. Lastly, the data reveal that spectral diffusion contributes negligibly to the homogeneous line width on subnanosecond time scales.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app