Add like
Add dislike
Add to saved papers

Electronic g Tensors in U V Complexes-A Computational Study.

The theory and computation of EPR parameters from first principles has seen a great deal of development over the past two decades. In particular, various techniques for the computation of the electronic g tensor have been implemented in many quantum chemistry packages. These methods have been successfully applied to paramagnetic organic species and transition metal systems. The situation is less well-understood and established in the case of actinide-containing molecules and there is a dearth of experimental data available for validation of computations. In this study quantum chemical techniques have been used to evaluate the g tensor for UV complexes, for which experimental data are available for comparison. The g tensors were calculated using relatively simple, state-averaged complete active space self-consistent field (SA-CASSCF) calculations. This approach is shown to be capable of providing useful accuracy. Aspects of the computations that should be refined to provide a more quantitative approach are discussed. The key features of the underlying electronic structure that influence the computed g values are delineated, providing a simple physical picture of these subtle molecular properties.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app