Add like
Add dislike
Add to saved papers

Effects of extrinsic cardiac nerve stimulation on atrial fibrillation inducibility: The regulatory role of the spinal cord.

OBJECTIVE: To investigate the effect of the mutual regulation of the extrinsic cardiac nerves on atrial electrophysiology and atrial fibrillation (AF) vulnerability.

METHODS AND RESULTS: Fourteen dogs were randomly divided into two groups: spinal cord stimulation (SCS) group (n = 7) and spinal cord block (SCB) group (n = 7). SCS was performed with 90% of the threshold voltage stimulating the T1 -T2 spinal level, while SCB was performed by injecting 2% lidocaine into the epidural space at the T2-3 level. The effective refractory period (ERP), ERP dispersion, and AF inducibility were measured during atrial pacing combined with different extrinsic cardiac nerve stimulation. ERPs were decreased in the atrium and pulmonary veins and ERP dispersion was increased from baseline during left cervical vagus nerve stimulation (VNS) or left stellate ganglion stimulation (SGS) in the two groups. When combined with SCS, VNS resulted in diminished ERPs at all recording sites, longer ERP dispersion and more episodes of AF than were observed during VNS, whereas ERPs were greater and correspondingly fewer episodes of AF occurred during SCS combined with SGS than SGS. In the SCB group, ERPs were shortened, ERP dispersion was lengthened, and episodes of AF were increased during SGS after SCB. SCS enhanced the activity of the left vagus nerve but attenuated the left stellate ganglion and superior left ganglionated plexus.

CONCLUSION: SCS modulates extrinsic and intrinsic cardiac nerve activity among the vagus nerve, stellate ganglion, and ganglionated plexus. SCS facilitates the effect of VNS and attenuates the effect of SGS on atrial electrophysiology.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app