Journal Article
Review
Add like
Add dislike
Add to saved papers

Roles of Nitric Oxide Synthase Isoforms in Neurogenesis.

Nitric oxide (NO), a free radical gas, acts as a neurotransmitter or neuromodulator in the central nervous system (CNS). It has been widely explored as a mediator of neuroinflammation, neuronal damages, and neurodegeneration at its pathological levels. Recently, increasing evidence suggests that NO plays key roles in mediating adult neurogenesis, the process of neural stem cells (NSCs) to generate newborn neurons for replacing damaged neurons or maintaining the function of the brain. NO synthase (NOS) is a major enzyme catalyzing the generation of NO in the brain. Recent studies indicate that three homologous NOS isoforms are involved in the proliferation of NSCs and neurogenesis. Therefore, the impact of NOS isoforms on NSC functions needs to be elucidated. Here, we summarize the studies on the role of NO and NOS with different isoforms in NSC proliferation and neurogenesis with the focus on introducing action mechanisms involved in the regulation of NSC function. This growing research area provides the new insight into controlling NSC function via regulating NO microenvironment in the brain. It also provides the evidence on targeting NOS for the treatment of brain diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app