Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

A Tyrosine Residue Along with a Glutamic Acid of the Omega-Like Loop Governs the Beta-Lactamase Activity of MSMEG_4455 in Mycobacterium smegmatis.

Protein Journal 2017 June
Mycobacterial beta-lactamases are involved in exerting beta-lactam resistance, though many of these proteins remain uncharacterized. Here, we have characterized MSMEG_4455 of Mycobacterium smegmatis as a beta-lactamase using molecular, biochemical and mutational techniques. To elucidate its nature in vivo and in vitro, and to predict its structure-function relationship in silico analysis is done. The MSMEG_4455 is cloned and expressed ectopically in a beta-lactamase deficient Escherichia coli mutant to establish the in vivo beta-lactamase like nature via minimum inhibitory concentration (MIC) determination. Likewise the in vivo results, purified soluble form of MSMEG_4455 showed beta-lactam hydrolysis pattern similar to group 2a penicillinase. In silico analyses of MSMEG_4455 reveal glutamic acid (E)193 and tyrosine (Y)194 of omega-like loop might have importance in strengthening hydrogen bond network around the active-site, though involvement of tyrosine is rare for beta-lactamase activity. Accordingly, these residues are mutated to alanine (A) and phenylalanine (F), respectively. The mutated proteins have partially lost their ability to exert beta-lactamase activity both in vivo and in vitro. The Y194F mutation had more prominent effect on the enzymatic activity. Therefore, we infer that Y194 is the key for beta-lactamase activity of MSMEG_4455.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app