Add like
Add dislike
Add to saved papers

An ovine in vivo framework for tracheobronchial stent analysis.

Tracheobronchial stents are most commonly used to restore patency to airways stenosed by tumour growth. Currently all tracheobronchial stents are associated with complications such as stent migration, granulation tissue formation, mucous plugging and stent strut fracture. The present work develops a computational framework to evaluate tracheobronchial stent designs in vivo. Pressurised computed tomography is used to create a biomechanical lung model which takes into account the in vivo stress state, global lung deformation and local loading from pressure variation. Stent interaction with the airway is then evaluated for a number of loading conditions including normal breathing, coughing and ventilation. Results of the analysis indicate that three of the major complications associated with tracheobronchial stents can potentially be analysed with this framework, which can be readily applied to the human case. Airway deformation caused by lung motion is shown to have a significant effect on stent mechanical performance, including implications for stent migration, granulation formation and stent fracture.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app