Add like
Add dislike
Add to saved papers

TGF-β1 Pretreatment Improves the Function of Mesenchymal Stem Cells in the Wound Bed.

The wound healing process initiates after injury to a tissue and involves a series of orchestrated events to minimize the invasion of foreign matters such as bacteria and efficiently regenerate the damaged tissue. A variety of cells must be recruited to the tissue during wound healing. However, this process is severely disrupted in patients suffering from chronic illness, including diabetes, leading to impaired healing or non-healing wounds. Current avenues of treatment include negative-pressure therapy, wound debridement, growth factor replacement, and cell-based therapies. Among these therapies, mesenchymal stem cells (MSCs) delivery to the wound holds a very high promise due to the innate abilities of MSCs that include immunogenicity, plasticity, and self-renewal. Bone marrow derived MSCs have been shown to promote more rapid wound healing by increased cytokine production in diabetic mice. However, the lack of understanding of the mechanical and chemical interaction of the transplanted MSCs with the factors present in the regenerative niches limits their efficacy in the wound bed. In this study, we sought to understand how the changes in MSC biochemical and biophysical properties can affect their function in vitro and in vivo. We demonstrate that pretreatment of MSCs with the mechano-stimulatory soluble factor transforming growth factor (TGF-β1), which is highly expressed in injury sites, improves wound closure in a syngeneic murine wound model. This improved wound closure correlated with increased invasion into the wound bed. In vitro studies demonstrated that TGF-β1 pretreatment expedited wound closure by increasing adhesion, traction force, and migration even after removal of the stimulus. Furthermore, this response was mediated by the cytoskeletal protein focal adhesion kinase. Taken together, this study suggests that defined chemical stimuli can benefit site specific adaptability of MSCs to improve their function and therapeutic usefulness.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app