JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Activation of NLRP3 inflammasome complex potentiates venous thrombosis in response to hypoxia.

Venous thromboembolism (VTE), caused by altered hemostasis, remains the third most common cause of mortality among all cardiovascular conditions. In addition to established genetic and acquired risk factors, low-oxygen environments also predispose otherwise healthy individuals to VTE. Although disease etiology appears to entail perturbation of hemostasis pathways, the key molecular determinants during immediate early response remain elusive. Using an established model of venous thrombosis, we here show that systemic hypoxia accelerates thromboembolic events, functionally stimulated by the activation of nucleotide binding domain, leucine-rich-containing family, pyrin domain containing 3 (NLRP3) inflammasome complex and increased IL-1β secretion. Interestingly, we also show that the expression of NLRP3 is mediated by hypoxia-inducible factor 1-alpha (HIF-1α) during these conditions. The pharmacological inhibition of caspase-1, in vivo knockdown of NLRP3, or HIF-1α other than IL-1β-neutralizing antibodies attenuated inflammasome activation and curtailed thrombosis under hypoxic conditions. We extend the significance of these preclinical findings by studying modulation of this pathway in patients with altitude-induced venous thrombosis. Our results demonstrate distinctive, increased expression of NLRP3, caspase-1, and IL-1β in individuals with clinically established venous thrombosis. We therefore propose that an early proinflammatory state in the venous milieu, orchestrated by the HIF-induced NLRP3 inflammasome complex, is a key determinant of acute thrombotic events during hypoxic conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app