Add like
Add dislike
Add to saved papers

Novel Hydrogen-Bonding Cross-Linking Aggregation-Induced Emission: Water as a Fluorescent "Ribbon" Detected in a Wide Range.

The development of efficient sensors for detection of the water content in a wide detection range is highly desirable for balance in many industrial processes and products. Presented herein are six novel different substituted Schiff base Zn(II) complexes, which exhibit the remarkable capability to detect traces of water in a wide linear range (most can reach 0-94%, v/v), low detection limit of 0.2% (v/v), and rapid response time of 8 s in various organic solvents by virtue of an unusual water-activated hydrogen-bonding cross-linking AIE (WHCAIE) mechanism. As a proof-of-concept, the WHCAIE mechanism is explained well by single X-ray diffraction, absorption spectra, fluorescence spectra, dynamic light scattering, 1 H NMR spectra, and theoretical calculations. In addition, the molecules demonstrated their application for the detection of humidity (42-80%). These Schiff base Zn(II) complexes become one of the most powerful water sensors known due to their extraordinary sensitivity, fast response, and wide detection range for water.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app