Add like
Add dislike
Add to saved papers

Identification of a host cell protein impurity in therapeutic protein, P1.

Residual host cell proteins (HCPs) are process-related impurities present in biotherapeutics that can pose safety health risks to patients. An adequate control of HCP levels in the final product, and demonstration of HCP clearance throughout a product manufacturing process is critical for all biotherapeutic products. Developing effective downstream purification processes can be challenging as HCPs and product proteins may possess an affinity for each other or have similar physicochemical properties, resulting in co-purification. In the current study, we identified the presence of CHO-catalase subunit protein as an impurity present in purified P1 protein. This previously unreported HCP impurity, was detected in P1 protein generated in Chinese hamster ovary (CHO) cells. Purified drug substance samples contained elevated CHO HCP levels when measured using a commercial anti-CHO HCP Enzyme-Linked Immunosorbent Assay (ELISA) kit. This finding, prompted further characterization of the HCP profile using 1D and 2D gels/ western blots using an anti-human IgG antibody as well as a commercial anti-CHO HCP antibody (Cygnus 813) for the detection of host cell proteins. The CHO-catalase protein has been characterized using a combination approach of one-dimensional (1D) and two-dimensional (2D) gels and western blotting techniques, and the identity confirmed using liquid chromatography-mass spectrometry (LC-MS/MS) analysis. Western blot analyses using the anti-CHO HCP antibody detected a potential HCP band at ∼60 kDa and a pI of ∼8 in the purified P1 sample. The 60 kDa HCP band was excised from 1D SDS-PAGE gels and LC-MS/MS analysis identified it to be CHO-catalase subunit. The identity of catalase monomer was further confirmed by western blot analysis using a specific anti-catalase antibody.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app