Add like
Add dislike
Add to saved papers

A rapid solvent accessible surface area estimator for coarse grained molecular simulations.

The rapid and accurate calculation of solvent accessible surface area (SASA) is extremely useful in the energetic analysis of biomolecules. For example, SASA models can be used to estimate the transfer free energy associated with biophysical processes, and when combined with coarse-grained simulations, can be particularly useful for accounting for solvation effects within the framework of implicit solvent models. In such cases, a fast and accurate, residue-wise SASA predictor is highly desirable. Here, we develop a predictive model that estimates SASAs based on Cα-only protein structures. Through an extensive comparison between this method and a comparable method, POPS-R, we demonstrate that our new method, Protein-C α Solvent Accessibilities or PCASA, shows better performance, especially for unfolded conformations of proteins. We anticipate that this model will be quite useful in the efficient inclusion of SASA-based solvent free energy estimations in coarse-grained protein folding simulations. PCASA is made freely available to the academic community at https://github.com/atfrank/PCASA. © 2017 Wiley Periodicals, Inc.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app