Add like
Add dislike
Add to saved papers

An organotypic slice culture to study the formation of calyx of Held synapses in-vitro.

The calyx of Held, a large axo-somatic relay synapse containing hundreds of presynaptic active zones, is possibly the largest nerve terminal in the mammalian CNS. Studying its initial growth in-vitro might provide insights into the specification of synaptic connection size in the developing brain. However, attempts to maintain calyces of Held in organotypic cultures have not been fruitful in past studies. Here, we describe an organotypic slice culture method in which calyces of Held form in-vitro. We made coronal brainstem slices with an optimized slice angle using newborn mice in which calyces have not yet formed; the presynaptic bushy cells were genetically labeled using the Math5 promoter. After six to nine days of culturing, we readily observed large Math5-positive nerve terminals in the medial nucleus of the trapezoid body (MNTB), but not in the neighboring lateral superior olive nucleus (LSO). These calyx-like synapses expressed the Ca2+- sensor Synaptotagmin-2 (Syt-2) and the Ca2+ binding protein Parvalbumin (PV), two markers of developing calyces of Held in vivo. Application of the BMP inhibitor LDN-193189 significantly inhibited the growth of calyx synapses, demonstrating the feasibility of long-term pharmacological manipulation using this organotypic culture method. These experiments provide a method for organotypic culturing of calyces of Held, and show that the formation of calyx-like synapses onto MNTB neurons can be preserved in-vitro. Furthermore, our study adds pharmacological evidence for a role of BMP-signaling in the formation of large calyx of Held synapses.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app