JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Helical Nanoribbons for Ultra-Narrowband Photodetectors.

This Communication describes a new molecular design that yields ultranarrowband organic photodetectors. The design is based on a series of helically twisted molecular ribbons as the optoelectronic material. We fabricate charge collection narrowing photodetectors based on four different helical ribbons that differ in the wavelength of their response. The photodetectors made from these materials have narrow spectral response with full-width at half maxima of <20 nm. The devices reported here are superior by approximately a factor of 5 to those from traditional organic materials due to the narrowness of their response. Moreover, the active layers for the helical ribbon-based photodetectors are solution-cast but have performance that is comparable to the state-of-the-art narrowband photodetectors made from methylammonium lead trihalide perovskite single crystals. The ultranarrow bandwidth for detection results from the helical ribbons' high absorption coefficient, good electron mobility, and sharp absorption edges that are defined by the twisted molecular conformation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app