JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Mimicking Complex Biological Membranes and Their Programmable Glycan Ligands with Dendrimersomes and Glycodendrimersomes.

Chemical Reviews 2017 May 11
Synthetic vesicles have been assembled and coassembled from phospholipids, their modified versions, and other single amphiphiles into liposomes, and from block copolymers into polymersomes. Their time-consuming synthesis and preparation as stable, monodisperse, and biocompatible liposomes and polymersomes called for the elaboration of new synthetic methodologies. Amphiphilic Janus dendrimers (JDs) and glycodendrimers (JGDs) represent the most recent self-assembling amphiphiles capable of forming monodisperse, stable, and multifunctional unilamellar and multilamellar onion-like vesicles denoted dendrimersomes (DSs) and glycodendrimersomes (GDSs), dendrimercubosomes (DCs), glycodendrimercubosomes (GDCs), and other complex architectures. Amphiphilic JDs consist of hydrophobic dendrons connected to hydrophilic dendrons and can be thought of as monodisperse oligomers of a single amphiphile. They can be functionalized with a variety of molecules such as dyes, and, in the case of JGDs, with carbohydrates. Their iterative modular synthesis provides efficient access to sequence control at the molecular level, resulting in topologies with specific epitope sequence and density. DSs, GDSs, and other architectures from JDs and JGDs serve as powerful tools for mimicking biological membranes and for biomedical applications such as targeted drug and gene delivery and theranostics. This Review covers all aspects of the synthesis of JDs and JGDs and their biological activity and applications after assembly in aqueous media.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app