Add like
Add dislike
Add to saved papers

pH-Responsive Graphene Oxide-DNA Nanosystem for Live Cell Imaging and Detection.

Analytical Chemistry 2017 April 28
The interaction between graphene oxide (GO) and DNA is very sensitive to the environment. For example, under acidic conditions, the affinity of GO for DNA is enhanced, weakening the capability of GO to distinguish DNAs with different conformations. This effect has impeded the development of sensitive pH biosensors based on GO-DNA nanosystems. In this work, we systematically studied the affinity between GO and i-motif forming oligonucleotides (IFOs) at different pH values and developed a herring sperm DNA (HSD) treatment method. Using this method, HSD occupies the surface of GO, compromising the attractive force of GO that is significantly enhanced under acidic conditions. As a result, the ability of GO to distinguish between "open" and "closed" IFOs is successfully generalized to a wider pH range. Finally, a pH-sensitive GO-IFO nanosystem was fabricated that showed excellent sensing ability both in vitro and for intracellular pH detection. Because the interaction between GO and DNA is the basis for constructing GO-DNA biosensors, the strategy developed in this work shows great potential to be applied in a variety of other GO-DNA sensing systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app