Add like
Add dislike
Add to saved papers

Anti-inflammatory Effects of Novel Thiazolidinone Derivatives as Bioactive Heterocycles on RAW264.7 Cells.

The inhibition of the inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX-2) and nuclear factor-κB (NF-κB) production are research targets of attract in the field of anti-inflammatory drug development. Therefore, this study was designed to investigate the anti-inflammatory effects of novel thiazolidinone derivatives using a cellular model of lipopolysaccharide (LPS)-stimulated murine macrophage RAW 264.7. In the present study, five new derivatives (A to E) of thiazolidinone were synthesized and screened for anti-inflammatory activities. Cell viability of LPS-stimulated RAW 264.7 macrophages clearly decreased in >55 μg/mL of synthesized A-E compounds especially in the presence of C; therefore, up to 50 μg/mL of compounds were selected for the subsequent analysis. A majority of these compounds showed significant inhibition on the production of NO in LPS-stimulated macrophages in a dose-dependent manner. Compounds B and D (10-50 μg/mL) significantly inhibited LPS-induced NF-κB (p65) production in a dose-dependent manner. The effects of B and D on iNOS and COX-2 mRNA and protein expression in LPS-stimulated RAW 264.7 cells were detected by real time-PCR and western blot. B derivative significantly suppressed the iNOS and COX-2 mRNA level and as well as protein expression. Taken together, these results reveal that compound B as new thiazolidinone derivative decreased expression of the inflammatory-related signals (NO, iNOS and COX-2) through regulation of NF-κB; hence, this compound could be suggested as a novel therapeutic strategy for inflammation-associated disorders.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app