Add like
Add dislike
Add to saved papers

DNA methylation of METTL7A gene body regulates its transcriptional level in thyroid cancer.

Oncotarget 2017 May 24
DNA methylation is the best-studied epigenetic mechanism for regulating gene transcription and maintaining genome stability. Current research progress of transcriptional regulation by DNA methylation mostly focuses on promoter region where hypomethylated CpG islands are present transcriptional activity, as hypermethylated CpG islands generally result in gene repression. Recently, the DNA methylation patterns across the gene body (intragenic methylation) have increasingly attracted attention towards their role in transcriptional regulation and efficiency, due to the improvement of numerous genome-wide DNA methylation profiling studies. However, the function and mechanism of gene body methylation is still unclear. In this study, we revealed that the methylation level of METTL7A, a seldom studied gene, was downregulated in thyroid cancer compared to normal thyroid cells in vivo and in vitro. Moreover, we determined the methylation level of one CpG site at the exon of the METTL7A gene body impacted the transcriptional activity. Through generating a mutation of this CpG site (CG to CC) of METTL7A exogenous vector artificially in vitro, we observed higher RNA polymerase II recruitment and a declined enrichment of methyl-CpG binding protein-2 in gene body of METTL7A, in papillary thryoid cancer cells (BCPAP) compared to normal thryoid cells. Finally, we revealed that EZH2, a subunit of polycomb repressor complex 2, dominant in thyroid cancer, might be responsible for regulating gene body methylation of METTL7A. Our study depicted the DNA methylation patterns and the transcriptional regulatory mechanism of the gene body in thyroid cancer. Furthermore, this study provides new insight into potential future avenues, for therapies targeting cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app