Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Defective synaptic connectivity and axonal neuropathology in a human iPSC-based model of familial Parkinson's disease.

α-Synuclein (αSyn) is the major gene linked to sporadic Parkinson's disease (PD), whereas the G209A (p.A53T) αSyn mutation causes a familial form of PD characterized by early onset and a generally severe phenotype, including nonmotor manifestations. Here we generated de novo induced pluripotent stem cells (iPSCs) from patients harboring the p.A53T mutation and developed a robust model that captures PD pathogenic processes under basal conditions. iPSC-derived mutant neurons displayed novel disease-relevant phenotypes, including protein aggregation, compromised neuritic outgrowth, and contorted or fragmented axons with swollen varicosities containing αSyn and Tau. The identified neuropathological features closely resembled those in brains of p.A53T patients. Small molecules targeting αSyn reverted the degenerative phenotype under both basal and induced stress conditions, indicating a treatment strategy for PD and other synucleinopathies. Furthermore, mutant neurons showed disrupted synaptic connectivity and widespread transcriptional alterations in genes involved in synaptic signaling, a number of which have been previously linked to mental disorders, raising intriguing implications for potentially converging disease mechanisms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app