Add like
Add dislike
Add to saved papers

αO-Conotoxin GeXIVA disulfide bond isomers exhibit differential sensitivity for various nicotinic acetylcholine receptors but retain potency and selectivity for the human α9α10 subtype.

Neuropharmacology 2017 December
Nicotinic acetylcholine receptor (nAChR) subtypes exhibit distinct neuropharmacological properties that are involved in a range of neuropathological conditions, including pain, addiction, epilepsy, autism, schizophrenia, Tourette's syndrome, Alzheimer's and Parkinson's diseases, as well as many types of cancer. The α9α10 nAChR is a potential target in chronic pain, wound healing, the pathophysiology of the auditory system, and breast and lung cancers. αO-conotoxin GeXIVA is a potent antagonist of rat α9α10 nAChRs, with the 'bead' disulfide bond isomer displaying the lowest IC50 of the three possible isomers. In the rat chronic constriction injury model of neuropathic pain, this isomer reduced mechanical hyperalgesia without affecting motor performance. Here, we report the effects of the three disulfide bond isomers of GeXIVA on human α9α10 nAChRs, other human nAChR subtypes, various rat nAChR subtypes, and 10 rat α9α10 nAChR mutants. The three isomers displayed only ∼5-fold difference in potency on the human vs rat α9α10 receptors and had similar affinities at wild-type rat α9α10 nAChRs and all 10 α9α10 receptor mutants. From these findings, the binding site and mechanism of action of GeXIVA on rat and human α9α10 nAChR was deduced to be different from that of other conotoxins targeting this nAChR subtype. GeXIVA is therefore a unique ligand that might prove useful for further probing of binding sites on the α9α10 nAChR. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.'

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app