JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Effects of a Spacer on the Phase Behavior of Gemini Surfactants in Ethanolammonium Nitrate.

The aggregation behavior of quaternary ammonium gemini surfactants (12-s-12) in a protic ionic liquid, ethanolammonium nitrate (EOAN), was investigated by small-angle X-ray scattering, freeze-fracture transmission electron microscopy, polarized optical microscopy, and rheological measurements. The rarely reported nonaqueous two phases in the ionic liquid were observed at lower 12-s-12 concentrations. The upper phase was composed of micelles, whereas only the surfactant unimers or multimers were detected in the low phase. At higher 12-s-12 concentrations, different aggregates were formed. The lamellar phase was observed in the 12-2-12/EOAN system, whereas the normal hexagonal phases in 12-s-12/EOAN (s = 3, 4, 5, 6, 8) systems and the micellar phase in the 12-10-12/EOAN system were observed. Such a dramatic phase transition induced by the spacer chain length was due to the unique solvent characteristics of EOAN compared to those of water and its counterpart ethylammonium nitrate.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app