Add like
Add dislike
Add to saved papers

Mitochondrial matrix chaperone and c-myc inhibition causes enhanced lethality in glioblastoma.

Oncotarget 2017 June 7
Malignant gliomas display high levels of the transcription factor c-myc and organize a tumor specific chaperone network within mitochondria. Here, we show that c-myc along with mitochondrial chaperone inhibition displays massive tumor cell death. Inhibition of mitochondrial matrix chaperones and c-myc was established by utilizing genetic as well as pharmacological approaches. Bromodomain and extraterminal (BET) family protein inhibitors, JQ1 and OTX015, were used for c-myc inhibition. Gamitrinib was applied to interfere with mitochondrial matrix chaperones. A xenograft model was used to determine the in vivo efficacy. Combined inhibition of c-myc and mitochondrial matrix chaperones led to a synergistic reduction of cellular proliferation (CI values less than 1) in established glioblastoma, patient-derived xenograft and stem cell-like glioma cultures. The combinatorial treatment of BET inhibitors and Gamitrinib elicited massive apoptosis induction with dissipation of mitochondrial membrane potential and activation of caspases. Mechanistically, BET-inhibitors and Gamitrinib mediated a pronounced integrated stress response with a PERK-dependent up regulation of ATF4 and subsequent modulation of Bcl-2 family of proteins with down-regulation of Mcl-1 and its interacting partner, Usp9X, and an increase in pro-apoptotic Noxa. Blocking ATF4 by siRNA attenuated Gamitrinib/BET inhibitor mediated increase of Noxa. Knockdown of Noxa and Bak protected from the combinatorial treatment. Finally, the combination treatment of Gamitrinib and OTX015 led to a significantly stronger reduction of tumor growth as compared to single treatments in a xenograft model of human glioma without induction of toxicity. Thus, Gamitrinib in combination with BET-inhibitors should be considered for the development for clinical application.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app