Add like
Add dislike
Add to saved papers

Nitrobenzylthioinosine mimics adenosine to attenuate the epileptiform discharge of hippocampal neurons from epileptic rats.

Oncotarget 2017 May 31
Nitrobenzylthioinosine (NBTI), a specific inhibitor of type 1 equilibrative nucleoside transporter, could regulate the extracellular adenosine concentration and have protective roles in seizures. However, the protection mechanism of NBTI in seizures remains poorly understood. Here, the expression pattern and subcellular distribution of adenosine A1 receptor were detected by Western blot analysis and double-labeling immunofluorescence staining in Lithium Chloride-Pilocarpine induced epileptic rat model. At 24 h after pilocarpine induced rat seizures, hippocampal slices were prepared and the evoked excitatory postsynaptic currents (eEPSCs) amplitude of pyramidal neurons in hippocampus CA1 region was recorded using whole-cell patch clamp. In vivo, compared to control group, Western blotting analysis showed that the expression of adenosine A1 receptor protein was increased at 24 h and 72 h after seizure, didn't change at 0 min and 1 w, and decreased at 2 w. Double-label immunofluorescence revealed that adenosine A1 receptor was mainly expressed in the membrane and cytoplasm of neurons. In Vitro, adenosine decreased the eEPSCs amplitude of pyramidal neurons in hippocampus CA1 region, NBTI also had the same effect. Meantime, NBTI could further inhibit eEPSCs amplitude on the basis of lower concentration adenosine (50µM), and adenosine A1 receptor inhibitor DPCPX partially reversed this effect. Taken together, we confirmed that the expression of adenosine A1 receptor protein was increased in the early seizures and decreased in the late seizures. At the same time, NBTI mimics adenosine to attenuate the epileptiform discharge through adenosine A1 receptor, which might provide a novel therapeutic approach toward the control of epilepsy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app