Add like
Add dislike
Add to saved papers

Simultaneous formation and mineralization of star-P(EO-stat-PO) hydrogels.

Natural bone is an organic-inorganic composite of highly ordered collagen fibrils and ~60-70% nanocrystalline hydroxyapatite (HA) crystals resulting in a high fracture resistance for various mechanical loading situations. This study aimed to synthesize highly mineralized hydrogels to mimic the mechanical properties of cancellous bone. A six armed star molecule functionalized with isocyanate groups as reactive termini (NCO-sP(EO-stat-PO)) was used to build up a hydrogel matrix, which was then subsequently mineralized with hydroxyapatite nanocrystals following the hydrolysis of incorporated α-tricalcium phosphate particles. The advantage of this dual setting approach in comparison to simply adding unreactive filler particles to the hydrogel was demonstrated to be a strength improvement by the factor of 30. After 1-28d setting, the mechanical properties of a composite with 30wt% NCO-sP(EO-stat-PO) such as elasticity (5.3-1.4%), compression strength (11-23MPa) and E-modulus (211-811MPa) were found to be similar to the properties of cancellous bone.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app